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Contextualization

A not very funny joke

Three scientits, one in computer science, one in humanities, and one in biology enter a
café. . .

⇒ They have the same number of citations !

J.-F. Baffier (2018)

The analyzis of academic citation networks depends strongly on

Research field, era, host institution, fundings, . . .

Network size, its shape, . . . so its structure

Analytical tools used !
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Comment en suis-je arrivé lá?
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The value of the transmission of knowledge

Education is the transmission of civilization.

(Areil and Will DURANT — 1968)

Structure is more important than content in the transmission of information.
(The medium is the message)

(Abbie HOFFMAN — 1968)
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An academic citations network

FIGURE – Arxiv HEP-TH (high energy physics theory) : 27770 nodes (articles) — 352807 arcs (citations)
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An academic citations network

Expected properties :

Directed
(Pseudo-)Acyclic
Dynamic
Stable nodes (articles) : the papers are not modified after publication
Large et complex

According to the University of Ottawa, in 2009 the amount of 50 millions of academic
publications was reached (starting from 1665). Currently there is about 2.5 millions of
new publications per year.
With the constant growth in the number of researcher and the global growing population,
it is believed that the total number of publications will double every 9 years.

Unweighted (on the links)

Information is generated on each node (or at least on many)
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Other information networks

FIGURE – Réseaux d’interconnections des domaines et disciplines dans Wikipédia
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Other information networks
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Other information networks
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The h-index

FIGURE – Short exercise : what is the value of h here?

The Hirsch index aims to quantify
the impact of a publication (or
author).

Quick computation

Improvement over the simple
metric of the number of direct
citations

Reference metric (good
metric. . . on average)

Only consider a small part of
the citation network

Is it actually useful to evaluate
(to grade) the agents creating
knowledge?
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Strahler’s flow

The flow of Strahler is a first simple way to consider
the influence (here the river flow) of an agent on the
others.

How to extend it to the context of the transmission of
knowledge?

Information should possibly be evaluated on an
ascendant way

Classic metrics (i.e. direct citation number,
h-index, etc.) should be compatible

Algorithmic cost should be reasonable

Size/Speed ratio
n n2 n3 2n

10 100 1000 ≈ 1000
100 104 106 ≈ 1030

1000 106 109 ≈ 10300

FIGURE – A Strahler flow example to evaluate the
influence of each tributary river in the for-
mation of the main river.
Strahler number (4 here) measure the
complexity of the branching factor of the
river.
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A general framework

Definition
For a publication p, its in-neighborhood N−(p) is the set of all the publications
referring to p. The size of N−(p) is simply its in-degree d−(p). The corollary implies
that N+(p), the out-neighboorhood of p, corresponds to all publications to which p is
referring to (with a size d+(p), its out-degree).

K (p) =

{
λ, if N+(p) = ∅
F (K (s1), . . . ,K (sd+(p))), otherwise,

(1)

where λ designates a constant for terminal cases (leafs, often λ = 1), si ∈ N+(p)
represents the successors of node p, and F is an application depending on the values
K (s1), . . . ,K (sd+(p)). To simplify the notations, we denote
F (N+(p)) = F (K (s1), . . . ,K (sd+(p))).
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A general framework

Strahler Flow

F (N−(p)) =


1, if d−(p) = 0

max
q∈N−(p)

(K (q)) +

{
d−(p)− 1 if all values K (q) are equal
d−(p)− 2 otherwise

(1)

h-index

F (N+(p)) =

0, if d+(p) = 0
max

X⊂N+(p)
min
q∈X

(d+(q), |X |) (2)
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Definitions

Definition (Related)

Two articles p and q are said to be related if and only if there exist a path from p to q or
from q to p. They are k -related if they are related and if the shortest path between
them is at most of length k .

Definition (k -diffuse)

A measure of a node p is k -diffuse when it limits its computation to a subgraph
composed of the k -related nodes of p
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A first straightforward ascending flow

1

1

1

1 1 1

+ 1
2

+ 1
3

+ 1
2

+ 1
2

+ 1
2

+ 1
3

+ 1
3

11
6

11
6

7
3

1 1 1

+ 7
6

+ 7
6

3

3

7
3

1 1 1

+3

6

3

7
3

1 1 1

Jean-François BAFFIER JSPS — CNRS Flow of knowledge in information networks Monday, December 18, 2018 14 / 24



Introduction Information Networks Flow of knowledge Multiplex Networks Cycles, connected component and ethics Conclusion

A first straightforward ascending flow

ALGORITHM 1: ascending flow

input : A citation network with nodes (articles) and arcs (citations)
An empty dequeue Q (FIFO)

output: The ascending flow on each node (article) and each arc (citation)

1 Initialize each article v a with flow value αv = 1
2 Color each arc in white
3 Add all leaves in Q
4 while Q is not empty do
5 v ← pop_first(Q)
6 for each w son of v do
7 Color each (v ,w) in blue
8 αw ← αw + αv/d−(v)
9 if all incoming arcs of w are blue then

10 Q ← push_last(w)
11 end
12 end
13 end
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A first straightforward ascending flow

FIGURE – An ascending flow example (publications with a high h-index)
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A first straightforward ascending flow
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In terms of computation, from k = 2, the ranks obtained by the k -flow are rs = 0.99
similar of those of the regular flow so when a gain of computation is needed, one can
use k -diffuse version of the algorithm .
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The intrication of data

a
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a
a
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a,b,c

a,b

a,b

a
a

FIGURE – Illustration of the previous citation network transformed to a multiplex network, each citation creates its
own layer of interaction.
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The intrication of data

Definition
A citation subgraph Gp = (Vp,Ep) is induced by a node p such as
Vp = p ∪N−(p) ⊂ V , and Ep ⊂ E is such that, ∀(q, r) ∈ V 2

p , ∃a(q, r) ∈ E .

Let consider, for each publication p, its induced citation subgraph Gp = (Vp,Ep) of G,
the multiplex citation network G results in combining all individual subgraphs Gp
together.

Definition
A multiplex network G = (V , E,L) connects nodes (p, q) on different layers l such as
arcs a(p, q, l) ∈

⋃
l∈L El . A multiplex citation network G = (V , E,L) is defined such as

G =
⋃p∈V

p Gp , hence E =
⋃p∈V

p Ep and L = V .

Note that an arc a(p, q, l) exists if and only if both p and q cite l or if l = q. As a
consequence, the multiplex network once “flattened”, has the exact same topology as
the original citation network. The difference lies in the multiple edges.
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The intrication of data

In our multiplex citation network, the notion of neighborhood remains the same as in
the monoplex case. However we can refer to a different notion of multiplex degrees
δ+(p) and δ−(p) that takes into account the number of arcs connecting a node to its
neighborhood.

Definition
Denote the multiplex out-degree δ+(p) (respectively the multiplex in-degree δ−(p)) a
node p in the multiplex network G.
δ+(p) = |a(p, q, l)|, ∀q ∈ V , ∀l ∈ L, s.a. ∃a(p, q, l) ∈ E (respectively
δ−(p) = |a(q, p, l)|)

The degrees d+(p) and d−(p) still refer to the degree in the monoplex network G, i.e.
the size of the neighborhood. We then introduce the degrees d+

l (p) and d−l (p)
corresponding to the degree in the subgraph Gl , i.e. the number of arc adjacent to p on
the layer l .

Definition
Denote the layer out-degree δ+

l (p) (respectively the layer in-degree δ−l (p)) a node p in
the subgraph Gl. δ+

l (p) = |a(p, q, l)|, ∀q ∈ V , s.a. ∃a(p, q, l) ∈ E (respectively
δ−l (p) = |a(q, p, l)|)
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Aggregated Flow
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Aggregated Flow

ALGORITHM 2: Aggregated flow (multiplex)

input : A citation network with nodes (articles) and arcs (citations)
An empty dequeue Q (FIFO)
A function αinit over the nodes

output: The ascending flow on each node (article) and each arc (citation)

1 Initialize each article p with a flow value λp = λinit (p)(= 1 by default)
2 Color each arc in white
3 Add all leaves in Q
4 while Q is not empty do
5 p ← pop_first(Q)
6 for each q son of p do
7 for each layer l ∈ Lp do
8 Color a(p, q, l) in blue
9 λq ← λq + λp/δ

+(p)

10 end
11 if all incoming arcs of q are blue then
12 Q ← push_last(q)
13 end
14 end
15 end
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Aggregated Flow

General framework formulation

F (N−(p)) =

q∈N−(p)∑
q

K (kq)/δ+(kq) + λp (3)

The complexity of the monoplex ascending flow is Θ(m) where m is the number of
citations. Since the input is a multiplex network, in the worst case the number of links in
the networks is equal to the number of nodes (layers) times the number of citations.
Thus, the time-complexity of this aggregated flow is Θ(mn).
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Sum Flow

This second extension of the ascending flow to a multiplex network consists in
combining multiple monoplex versions of the ascending flow.
Recall the definition of the ascending flow, adapted to a subgraph Gl :

FGl
(N−(p)) =

q∈N−(p)∑
q

KGl
(kq)/d+

Gl
(kq) + λ(p,l) (4)

The sum flow will simply sum ascending flows over all subgraphs composed of one
layer, determined for a node p by :

FG(p) =

l∈L(p)∑
l

FGl
(N−(p))

λ(p,l) =
λp

|L(p)|

(5)

If we set the parameter λ(p,l) = 1, the contribution of one publication to the whole
system will be exactly its number of citations, and a publication that cites lots of work
will produce a lot of flow. In order to maintain constant the unit of contribution of a
publication of a work, we set λp = 1 hence

∑l∈L(p)
l

1
|L(p)| = 1 such as a publication

brings exactly 1 unit of contribution to the system.
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Sum Flow
Initial weights
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Sum Flow

ALGORITHM 3: Sum flow (multiplex)

input : A citation network with nodes (articles) and arcs (citations)
output: The sum flow on each node (article) and each arc (citation)

1 Initialize each article p with a flow value λp = 0
2 for each article p do
3 Construct the citation subgraph Gp

4 F ← ascending-flow(Gp) with ∀q ∈ Vp, λinit (q) = 1
d+(q)+1

5 for each article q ∈ Vp do
6 λq ← λq + F(q)
7 end
8 end
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Selective Flow
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Selective Flow

input : A citation network with nodes (articles) and arcs (citations)
An empty dequeue Q (FIFO)

output: The selective flow on each node (article) and each arc (citation)

1 Initialize each article p with the color white and the value λp = 1
2 Color all leaves in red and push them into Q
3 while Q is not empty do
4 q ← pop_first(Q)
5 for each r son of q do
6 if r is white then
7 Construct Gr and initialize all λ(a(q, r , l)) to 0
8 push_last(Q, r)
9 Color r in red

10 end
11 end
12 for each layer l ∈ Lq do
13 Initialize λl,q = 0
14 for each parent p of q do
15 λl,q ← λl,q + λ(a(p, q, l))
16 end
17 for each son r of q do

18 λ(a(p, q, l))← 1
d+(q)×(1+|L(q,r)|) +

λl,q
d+
l (q)

19 end
20 λq ← λq + λl,q

21 end
22 end
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Selective Flow

FGl (N
−(p)) = λ(p,l) +

q∈N−(p)∑
q

KGl (kq)

d+
Gl

(kq)

FG(p) =

l∈L(p)∑
l

FGl (N
−(p))

α(p,l) =

j∈N+(p)∑
j

λp

d+(p)× |L(p, j)|

(4)
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What ethics in influence measures

We can define some criteria to guarantee an ethic that we hope flows naturally

Equity between articles

Metrics with bounded values in pratice

A network (or sub-network) with consistent content : for instance articles from a
same field or institute.

These criteria are put to the test by the mere presence of cycles within the network.
That is, the existence of a couple of nodes (items here) that are descended from each
other.
We say that a sub-network is a (strongly) connected component if every vertex is
reachable from every other vertex.
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A costly solution, decycling (with drawings)
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Solving the time/accuracy ratio in Information Networks
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Conclusion

Solutions to the Big Data Science problems are inherently cross-domain.

(Jean-françois BAFFIER — 2018)
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